Sodium-activated potassium conductance participates in the depolarizing afterpotential following a single action potential in rat hippocampal CA1 pyramidal cells.

نویسندگان

  • Xinhuai Liu
  • L Stan Leung
چکیده

The depolarizing afterpotential (DAP) following an action potential increases the excitability of a neuron. Mechanisms related to the DAP following an antidromic or current-induced spike were studied in CA1 pyramidal cells by whole-cell recordings in hippocampal slices in vitro. In DAP-holding voltage curves, the DAP at 10 ms after the spike peak (DAP10) was extrapolated to reverse at about -50 mV. Increase of extracellular K(+) concentration increased DAP and neuronal bursting. DAP10 reversal potential shifted positively with an increase in [K(+)](o) and with the blockade of K(+) conductance using pipettes filled with Cs(+). Similarly, extracellular tetraethylammonium (TEA; 10 mM), 4-aminopyridine (3-10 mM) increased DAP and shifted the DAP10 reversal potential to a depolarizing direction. Decrease of [Ca(2+)](o) did not alter DAP significantly, suggesting a nonessential role of Ca(2+) in the DAP. Perfusion of tetrodotoxin (TTX; 0.1-1 microM) and replacement of extracellular Na(+) by choline(+) suppressed both spike height and DAP simultaneously. Replacement of extracellular Na(+) by Li(+) increased DAP and spike bursts, and caused a positive shift of the DAP10 reversal potential. It is suggested that Li(+) increased DAP by blocking an Na(+)-activated K(+) current. In summary, multiple K(+) conductances are normally active during the DAP following a single action potential.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of resveratrol on intrinsic neuronal properties of CA1 pyramidal neurons in rat hippocampal slices

Introduction: Resveratrol (3,5,4-trihydroxystilbene) a non-flavonoid polyphenol found in some plants like grapes, peanuts and pomegranates, possesses a wide range of biological effects. Evidence indicates that resveratrol has beneficial effects on nervous system to induce neuroprotection. However, the cellular mechanisms of the effects are not fully determined. In the present study, the cellula...

متن کامل

Electrophysiological study of amygdale-induced changes in the excitability of CA1 hippocampal pyramidal neurons in male adult rats

Introduction: Many studies have shown that amygdala kindling produces synaptic potentiation by induction of changes in the neuronal electrophysiological properties and inward currents both in epileptic focus and in the areas which are in connection with the epileptic focus and have important role in seizure development and progression such as hippocampal CA1 region. However, cellular mechani...

متن کامل

Antibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture

Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of hippocampal pyramidal neurons was examined. Methods: Electr...

متن کامل

FINAL ACCEPTED VERSION Background activity regulates excitability of rat hippocampal CA1 pyramidal neurons by adaptation of a K conductance

In the in-vivo brain background synaptic activity has a strong modulatory influence on neuronal excitability. Here we report that in rat hippocampal slices, blockade of endogenous in vitro background activity results in an increased excitability of CA1 pyramidal neurons within tens of minutes. The increase in excitability constitutes a leftward shift in the input-output relationship of pyramida...

متن کامل

Effect of Coenzyme Q10 (ubiquinone) on hippocampal CA1 pyramidal cells following transient global ischemia/reperfusion in male wistar rat

Ischemia/Reperfusion (I/R)-induced cerebral injury has been reported as a leading cause of deathand long-term disabilities. Hippocampus is an area which is more sensitive to be affected by I/Rand hypoxic conditions. Coenzyme Q10 is a strong antioxidant which plays a role in membranestabilization. This study aims to investigate the possible role of CoQ10 in ameliorating thehistomorphological cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research

دوره 1023 2  شماره 

صفحات  -

تاریخ انتشار 2004